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We consider a differential game [ l- 33 directly related to [4], where an ana- 
logous problem was analyzed for points under the action of controls alone and 

to [S), where the problem was investigated of the “soft” contact (with respect 
to coordinates and velocities) of points in a linear central field. In the present 
paper we solve the problem of the minimax time up to the “hard” contact 

(with respect to coordinates) of two points (players) with masses ,,tl and ~“2, 
moving under the action of position forces F, : - - uhlr, and /.‘s == - w%?~T? 

(rlr 1’2 are radius vectors of the points relative to the center of attraction) and 

of controls fl - ,n,tr and f2 = -- n)2~’ arbitrary in direction and bounded 

with respect to the total momentum. The first player minimizes, while the 

second maximizes, the time up to the hard contact. The whole space of pos- 
sible positions is separated into two regions. In the first region we find the 

optimal controls ofhoth players and the minimax time up to the “hard”contact. 
In the second region we form the second player’s control which he uses avoid- 
ing contact under any action of the first player. 

1. The equations of relative motion (,c -_ r-i - r?, y = r, - r2’) , after a scale 
change in length and in time reducing to the equality (,) = Z. have the form 

L’ = !/. J/’ = - J‘ + II + 17, p = - 1 I! 1, v :=- - 1 I’ / (1.1) 
i’ > 0, y:> 0 (14 
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where X, Y, u, u are three-dimensional vectors, 1 7~ 1, ( u 1 are Euclidean moduli, 
and l_~ > 0, v > 0 are numbers. The constraints p > 0, v > U and the equations 
/A‘ = -I u 1, v’ :*-I u] are equivalent to “impulse” constraints on the controls 
u, v of the first and second players. These constraints have the form 

P0 - s 1 u 1 at = p(l)(t) > 0 
0 (1.3) 

v” - s 1 v ) at = v(2) (T) > 0 
0 

and permit instantaneous changes in vector y and in the numbers lo, v by the formulas 

Y@J) = Y + c11 + v2, y(211) = p - I p1 1 ) y(2,l) zz y - I 'VP I (1.4) 

where pr, ‘v2 are three-dimensional vectors. In this case we will consider the impulse 

controls u = plb, u = V,ci. 
We call the vector w = [z, y, p, v], defined by the collection of arguments indi- 

cated, the position and we introduce into consideration the vectors 

w(i) = [LX, Y(l) = y + /_Lr (w), y(l) = I” - 1 pL1 (20) I ; v(l) = v] 
w(2) = [Ic, y(2) = y + vg (w), p(2) = p, v(2) = v - 1 v2 (zu) I ] 

w(2,l) = [",p'l) = y(s) + p1 (u)(2)), $2.1) zz p - I pl(&+)) I; y(2J) = y(2)] 

&a) = [z, y(1.2) zzz $1' + y2 (w"'), p.(1,2) zz p(l), y(ls2) = y - I v, (u"") 1 ] 

where w(l), wc2) denote the results of impulse actions of the first and second players, 
which can be realized as functions of vector w. The vector w@J) (~(1~2)) represents 
the result of the impulse actions at first of the second (first) and next of the first (second) 

players. let the vector z&i) (t > 0), (L&J) (,? > 0)) be given as a function of time. 
The initial value of ru is called the position at t = U , while the left limit W’(2J) (.t - 

U) ( (w C2) ( T - 0)) is called the .position at t = ‘t > 0 . The pair u (w(2), LJ), v (W) 

and the trajectory w(s:i) (t > 0; (u (w(2), u), v (w)); w (U)) corresponding to it are 
said to be admissible if for all t the trajectory is unique, right continuous, and satisfies 
constraints (1.2), and ii Eq. (1.1) is satrstied for almost all L’ . Furthermore, on each 
finite interval U & t & t, the trajectory can admit of a finite number of jumps in 

accord with formulas (1.4). The admissible pair u (w), v (w(l), u) and the trajectory 
r&s) (t > 0, {u (w), v(uW, u)] w (0)) are defined analogously. We call the set 

M[lzl =Olth e g ame termination set (the set of hard contact) and we examine 
two problems on admissible pairs. 

Problem 1. Find the pair U” (W c2), U), no (W) such that the time T [u, VI of 
the first hitting of the position onto 1M would satisfy the estimates 

T [no (w(2), u), v(w)] <T [u” (w(2), u), d’(w)1 <T [n (vC2), v), u” (@I 

Problem 2. Find the control v. (w(l), u) such that the trajectory corresponding 

to any pair 1L (W), V. (W cl’, u) would not hit upon set ill in finite time. 

l,et Ya, YB be the projections of vector y onto vector z and onto a plane perpendi- 
cular to 2. We introduce the right unit triple of unit vectors ja, is, j.( by the formulas 

ja = zilzl, ia = YP i I YP 0 ~L’ED~[I~I>U, lY.jI>Ul 
ja _ z / I z I; ja, jy arbitrary ; WE D, Ilz I >O; lyeI == 01 
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Denoting the projections of a vector onto the unit vectors by the subscripts a, p, y Me 

obtain in regions D,, D, the corollaries of Eq. (1.1) 

1x1’ = Ya, Y,‘= -~x~+~,+~‘~+Yp21/I~I, (1.5) 

IYpI’= up+ VI3 -YY,l%/I4 
15 1. = ya, ya’ = - I x I + ua + vu, I yp 1. = V(q3 i- d2 + 04 + &Y 

and the corollaries of Eqs. (1.4) 

Y,@,l) = Ya + P1a + 3G 

I y&2J1) I = [(I YP I + PlP + y2d2 + (PlU + y2Y)21”’ 

Intuitively it is clear that the solution depends only on the quantities ) x 1, Ya, 1 yp 1, 
g = p - Y. For the collection of them we retain the notation W. 

2. The motion by virtue ofsystem (1.1) with u = u = 0 admits of the first integ- 

rals of energy and of moment of momentum 

2h (w) = ya2 + ya2 + X2, k(w) = I YS I Ix I 

while the minimal value 1 ypl” of the quantity 1 yp( for the uncontrolled motion has 

the form 
I ga 1’ = r/h(w) - v h” (w) -- /c2 (w, 

The function z (w) = E - ( yp (w) lo divides the region D = D1 U D, into the two 

regions 
D”[]xI>(J, z(w)>~l, Do[(xI>% z(w)<~I 

Lemma 2.1. The pair u (w(z), v), u (w) = 0 does not increase the function 

z (w’“)), while the pair 11 (w) mm 0, o (w(l), U) _ does not decrease the function z (K). 

Proof. It is obvious that the equality ,c2) = w is valid when u (w) = u . Let us 

consider some finite control u = u (w, v). The right derivative z. (u’,. u, v = 0) has the 

form 
2’ (w, U, 0) = - 1 fij + haa, + hpuf, for 2 (K) #O 

h, = - 
yaz (=) 

zI/h-- 
hp = - 

$z (1~) + k I 5 l/z (1~‘) 

2 l//l .- k” 

h = h (UJ), h- = k (w) 

It is not difficult to see that the estimate z’ < 0 follows from the estimate h,‘: + )ti,;2 -- 

I <O.We compute the quantity 

h’;. ‘- $2 - 1 = - 1 + 
21 (2/L - z’)) + (2h _ 2:) __ z/,.2 

3 (h - /; ) 

where z = z (I(‘). The factor in the brackets increases monotonically with 1 .z / and 

reaches a maximum, equal to 4 (h - k” , for 1d.i -= k / z (~1 which is equal to the max- 

imal value of 1x1 on the uncontrolled trajectory. Hence follow the estimates I._,* -;- 
A,<’ 1 .c 0 and z’ < 0 for z ((I>) # 0. When z (u) 2: U the derivative z’ has the form 

In summary, we have established the estimate z’ (w, U, v = 0) < 0 for any finite 1,. 

For impulse u (~7) = cl16 the estimate Az.(tj1 -== z (#j) -~ z (I(-) ; 0 can be obtained 

by applying the theorem on the mean. The proof of the estimates 

z’(w, u=o, v)>O, AZ(~) := z (w”‘) - z (I(,) ,, 0 



is obtained analogo~tsly and completes the proof of lemma 2.1. 
Theorem 2. 1. If w (0) E D,, the control 

v(J (w(l), u) = 0, w(l) E Do,1 = Do n [p(l) - Y = p > O] 

vo (w(l), u) = I 24! I jp, tdl) E Do,2 = Do n [p = O] 

uo (td”, u) = - g,%jp, w(l) E Dog = Do n [E”’ < O] 
solves Problem 2. 

Proof. Let us assume to the contrary that for some t = z > 0 the equality 
1 z (Z) ( = 0 is fulfilled on an admissible trajectory. This trajectory cannot lie, for 

0 < t < z , wholly in the region Do.1 because the estimate E (t) > 0 and the esti- 

mate z (w (t)) & z (W (0)) < 0, being a consequence of the conditions u. = 0 for 
w E Do,i , and Lemma 2.1 lead to a contradiction. This means that for some tl from 

the interval [O, z] the inclusion w (1) (tl) E Do,a or the inclusion w(t) (tl) E Do,3 
should be valid. In the first case it is necessary to satisfy the estimate ) pg' (tl) 1 > 0, 
while in the second, the estimate 1 #'"' (tl)) > 0. Further, the control u. (w(t), U) 

leads the trajectory WC 
1 yf2' (t)l 

1,s) (t > tt) along region Do.2 while preserving the estimate 
1 d1,2j (t) 1 > 1 I/Y"' (tl) 1 1 x(1.2) (tl) 1 > 0 , and hitting onto M is 

impossible. The proof is completed. 

3, In the region D” [j-x I> 0; z (w) > 0] we define the controls 

U0 (W(s), U) = 0, v” (20) = 0 

tu(s), w E DIG = D"fl{K =E'-- ?/ti2<OlU (3.1) 

u [E >O, Ya-v-t>011 

zP(w(2), u) = - V/5’2’6ja - I yp I&p 

u” (4 is antiparallel to UO(W, U) (3.2) 

w(s), w E D2' = Don [5> 0, ~a - l/t GO; E" + T/P"> 01 

22 (w(2), u) = - I u, I jl - qj3 - z?,j, 

V’ (w) is arbitrary with the condition u:, > 0; [vzz > 01 (3.3) 

WE Da0 = D”ll[!/aS0; ~=IYl3I=Ol 

The controls v” (w) in formulas (9.2), (3.3) are defined with a sufficient degree of 
arbitrariness. The second formula in (3.2) permits any finite or impulse control u” (w), 

antiparallel to vector 11” (w, u), which does not depend on v in the case given. The 
second formula in (3.3) permirs any finite or impulse control U’ (w) with a nonnegative 
projection r~, [vz,]. The first formula in (3.3) in fact coincides with the first formula 
in (3.2) for a second player’s impulse control realizing the inclusion w@) E D,". 

Theorem 3.1. The pair of controls u” (w(2), u), u” (~7) corresponds to Proh- 

lem 1 and realizes in region Dlo the time 

T[n~0,~"]~=T~(w)--t1(~)~-~~2;~~D~0 

where ti (w) is the smallest positive root of the equation 

n (w, t) = (x2 - Ez) sin” t - 2 1 IL: 1 7jI* sin t Cos t -/- (r/=” $- y,3’ - g”) Cm2 t 7 0 
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The time T [d’, u”] corresponds to the estimate T [d’, $1 < T [u’, ~1 far any 
pair u” (r&t, u), o(w) and to the estimate ?’ 1% v”l > p I$, ~“1 for any pair 
u (&Q, v), v” {u;), retaining the trajectory in region Do (*I. 

The proof of Theorem 3,1 requires the successive proofs af a number of the following 

Assertions. 
8, 1 l 1 (**). If for zu EDI” both players use finite controls U, vt then the estimates 

~‘“‘(Iu, u0 = 0, u # O)< T"(w, u0 s 0, vOz 0) = - 1 <P'(w, u# 0, u0 = 0) (3.4) 

are valid. 
Proof. Setting, for the sake of brevity, 

sin (tl (w)) == s, co.9 (tl (3) = c, 2 / (ar (20, t = tl) / 2) -= $ 

for the derivative To' we obtain the extression 

Since tr (u) is the smallest positive root of the euuation rl (w, t) = 0 and since the con- 
dition q (EJ, 0) > 0 is fulfilled, the estimate do (to, t = t,)/i?t < 0 is necessarily fulfilled, 

Let us assume that the latter qunatity is negative. The factor in the brackets in formula 

(3.5) is nonpositive for 1~1 # 0, /u/ = 0 and is nonnegative for IuI = 0, /VI # 0. To 

prove the last assertion it is sufficient to consider the expression 

(3.6) 

The second partofrelation(3,6) is obtained from the first after taking into account the 

equality 11 (u;, tl) = 0. Thus, the estimate (3.6) proves estimates (3.4) for arl (w, t = 

tz) i at < 0. 
The case @ (w, t = tJ/at = o requires additional analysis which briefly consists of 

the following. We can show that in this case the equality B (w) = (! is fulfilled. The 
condition w E DiV implies as a consequence the estimate z (w. u f U, u = U) < U, 

because of which the motion passes into region BQ when u =$ 0. Any pair u* = 0,~ u # 0 
leads to a growth of the function z (a), so that for any small finite segment of the tra- 

jectory corresponding to the pair u” = 0, v (w) # 0 we can establish the estimate 
AT” < & because for any 0 < t < bt the derivative TV’ (w, 0, D: exists and satisfies 

the relation T” (w, 0, uf -+ - 30 as t - + 0. The proof of assertion 3.1.X is completed. 

*) Since the control v0 (w) is defined only in D”, the pair u (v, v), v’. (1~)~ retaining the 
trajectory in ffO is caibd the pair on which the inclusion &?a’) (t, (a (w, v), vQ (~~11, 
FB (O)EL)~)ED’, is valid up to the instant of hitting onto M , whib the velocity of the 

representative point on the boundary z, (w) = 0 is directed either toward the interior 

of region D or along the boundary. In this sense Theorem 3,l makes no claim of a 
complete correspondence with Problem 1. 
** ) Assertions 3.1.1,. . . , 3.1.4 are concerned with finite pairs u, u”. 
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3.1.2. The estimate 
T”’ (uq, u, u”) > - 1 

is valid for the region Dr” with the exception of the boundaries 

DZ,i” = ij = 0; ya .s O] (-j DLO; 4,a” = [g > 0, y, - 1/;1 = O] r: ilao 

(3.7) 

To prove Assertion 3.1.2 we note that the estimate 5 ) 0 and the estimate A (w) < 

0 are valid in the indicated part of region DL’- , and we write down the derivative 2”’ 

2”“. = - 1 -- (p’ j ,-:)-I [ - p,,CL // a/;-r R, (w, u, $)j 
(3.8) 

fI’;O (V‘, IL, 9) = ( 3 / ( :- II 1 (4 I u I 4- I Y;3 ! I(,$) / I/b (3.9) 

The obvious estimate H, (w, U, vu) >, 0, the estimate p1 (u.) < 0, and the formula (3.8) 
prove estimate (3. ‘7) and Assertion 3.1.2. 

3.1.3. On the boundary Di,l any pair u # u0 (w, u), v” (w) either transfers the 
trajectory into region DI’ with a positive jump A2’” >0 or transfers the trajectory into 
region DO. 

Proof. Let 5 = 0, Ya < 0. Under these conditions 

F - I y:i I = 0, 4’ - IYp I .= - I u I -I- I o” [ - (W$ _t upO) i- ya 1 yg I/ 1 lc I< 0 

for Ya <OS lY$ I >o 

This means that there exists a unique control uc (10, V) = - 1~: 1 Sjl, preserving the equa- 

lity < (t > 0) - ( ya (t > 0) 1 = 0, while any other one transfers the position, for Y= < 0 , 
into region DX” or into region DO. The remaining cases Y, = 0 or Y3 = 0 are investi- 

gated analogously. 

3.1.4. The equality p1 (w) = 0 is fulfilled on the boundary Di,2 and, therefore, 

on the basis of formulas (3.8), (3.9) we can assert that the equality I” (w, u, 0”) = - 1 
is valid for any control u parallel to the optimal jump U” (w, D) and for Y = v”. However, 

it is obvious that for u + U” (w, c) the equality To’ (w, U, 8) = -4 is violated at an 
infinitely close adjacent position and turns into the inequality 

T”’ (W + Aw, U, DO) > -1 

3.1.5. Suppose that for w E DiO the second player realizes a certain optimal 
jump v” (w) antiparallel to the vector u” (w, u), while the first player realizes the jump 

I?%12 (lb .v2’, E) with 0 < rr~ < 1. Simple calculations show the validity of the equalities 

pt. (IL*) = p, (W(Z)) = pl (&If) 

5, 1/c -_ 4’ V’;cu = $2,1) / y' 5(".1) 

If after the indicated jumps both players realize the controls UI, ZTI’; parallel to the opti- 
mal jumps, then formula (3.8) shows that the derivative T *(wiz2”, U, c) proves to be 
closer to - 1 the lesser is the quantity :@,‘). This allows us to obtain the equality 

lixn II’“’ (~(~1~) (w, I)>u~, co), ~1, 01’) ~:= - t [3. JO) 
m-1 

3.1.6. Suppose that at 2 = u both protagonists have realized optimal jumps (then 

&sol) E. D30, and finite controls are realized for t > 0 ). The derivative T has the 

From the latter formula we see that any pair lli, 1‘ #= L.’ decreases the derivative 3’” 
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from - 1, while any pair u # u”, v” either increases the derivative T”’ from -1 or 

transfers the position into region &,. 
Assertions 3.1.1 - 3.1.6 settle the proof of Theorem 3.1 for those cases when the 

players realize jumps parallel to the optimal ones or use finite controls. 

3.1.7. Any impulse control 2, = v& # v” (UI) strictly decreases the function T” (w), 
i e I” (ID@‘) <T”(w). . . 

To prove Assertion 3.1.7 we should inspect a number of cases. 

3.1. 7.1. Let WEDl”, UP) E 0’. We consider the function 

11 (J2), t](w)) = - I va I”s” - 2 [E I vi If 15 I vzXcs - (Yav2, a + I Yp I va, p) @I < 0 

The latter estimate follows from the estimates I ve ] > 0; s” = sin2 (tl (w)) > 0 and from 

estimate (3.6). From the estimates q (wt2), tl (w)) < 0; q (w(“, 0) > 0 there follows the 
estimate AT” = tl (w(~)) -- tl (w) < 0 which completes the proof of Assertion 3.1.7 in the 

case 3.1.7.1. 

3.1. 7.2. Let w E 4” LJ Ds’, w(2) E Dzo U ho. We consider the difference 

API = PI (w”‘) - pl (w) = v 2. a -l/s + vi, (1 + 2 (4 I v2 I - I Yp I v2* p --i-f lft 

The difference Apl can become a nonnegative number only if the estimates 

1/~+-v2,a>0. -w21+v2,a 1/C+v,,pIYpI>o 

are fulfilled simultaneously. Both these estimates are compatible only for v = v” (w). 
The estimate ApI < 0 and the estimate AT” < 0 are realized for v = v& # u” (w) ; 
this 

Dl"] , 

[w E Do; w(‘) E Do] 

The proof is carried out on the basis of the estimate Ap1 < 0 and of Lemma 2.1. 

3.1.9. Any impulse control u = uIb; # mu’ (w, V) (0 < m < 1) either strictly 
increases the function T”(w) or transfers the position into region D,; (TQ (I#) > TO (w)). 

The proof is carried out in analogy with the proof of Assertion 3.1.7, by examining 
in succession the cases 

3.1.9.4 w E Dl”, w(l) E D1” 

3.1.9.2 w E Dn” U Da”; w(l) E Da” IJ Ds” 

3.1.9.3 2~’ E Da0 U Da”, w(l) cy D,” 

3.1.10. There is no impulse control u = ~~6 ,which can effect the crossing 

[w E D,O; w(l) E D;?’ U 03’7. 

The proof is based on the estimate q (W (0 0) 0. agregate of Assertions 3.1. i - , 

3.1.10 proves Theorem 3.1. 
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4, Let us give a short geometrical interpretation of the optimal motion, Let the 
representative point whose position is determined by the vector x describe, in a control- 

free motion, an ellipse (Fig. I), The arcs 
nc and alcl of the ellipse belong to region 

D1". On these arcs the first player either 

(on the segment nb) cannot cancel the 

lateral component i Yp i > 5 or (on the seq- 
ment trc) passes to the value Y:” {w) 3 0 

(pl (w) > 0). This is valid, of course, for 
controls LL preserving the inclusion W(lj E 

Do. The arguments set forth force both 

Players to follow along the arc (UC) with 
controls u3 = U” = U up to the point c at 
which the equality E = 1 y 1 is first rea- 

lized, At the point c the first player apl 

Fig, 1 
lies the impulse ~0 (UI t2f, v) = - y6 and the 
subsequent motion takes place along the 

straight line c 0, The equality E = Iy (Q f is equivalent to the equation q (wI tl) = 0 
for w E Di’, and the total time for hitting into the point 0 (1 z 1 = 0) turns out to be 
t, (W) + n / 2 = zj” (W). 

However, if the position 1~ E&“, which corresponds to locations on the arcs Le, al], 
[c,, a]_ then at any point d of the arc {c, a11 the optimal control tt” (m(a’% v) is realized 

in the form of an impulse (n, m), while the radial velocity ~z*‘~ (~~“1 obtained proves 
to be nonpositive. The subsequent motion takes place along the straight line (d, 0) and 
the hitting into the origin 0 is realized after a time r (w) = a / 2 -!- arc tg (~1 (w) / ! z 1). 

If at any point a the first player does not cancel the velocity g$% with the impulse u” = 
- Y&F, but applies some finite control u (w), then the position passes into region 01~ 

and the time T(w) increases by a jump, 
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